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Abstract

High-quality medical data is critical to the development and implementation of machine learning (ML) algorithms in healthcare; 
however, security, and privacy concerns continue to limit access. We sought to determine the utility of “synthetic data” in training ML 
algorithms for the detection of tuberculosis (TB) from inflammatory biomarker profiles. A retrospective dataset (A) comprised of 278 
patients was used to generate synthetic datasets (B, C, and D) for training models prior to secondary validation on a generalization 
dataset. ML models trained and validated on the Dataset A (real) demonstrated an accuracy of 90%, a sensitivity of 89% (95% CI, 
83–94%), and a specificity of 100% (95% CI, 81–100%). Models trained using the optimal synthetic dataset B showed an accuracy 
of 91%, a sensitivity of 93% (95% CI, 87–96%), and a specificity of 77% (95% CI, 50–93%). Synthetic datasets C and D displayed 
diminished performance measures (respective accuracies of 71% and 54%). This pilot study highlights the promise of synthetic data 
as an expedited means for ML algorithm development.
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Background
Access to high-quality medical data is often hard to acquire 
which can impede the development and implementation 
of artificial intelligence (AI)/machine learning (ML) 
algorithms in healthcare.[1-3] Common sources of clinical 
data include electronic medical record (EMR) systems 
which are tightly regulated and often inaccessible to AI/ML 
developers due to patient privacy concerns.[4] Additionally, 
extraction of clean data from EMR systems can be 
challenging due to platform limitations, accuracy of data, 
as well as prioritization of essential day-to-day operations 
by local institutional information technology (IT), teams 
over requests for datasets for developmental purposes.[5-7] 
As an alternative, manual extraction of EMR data may 
be an option, but is at risk for transcription errors and is 
extremely time-consuming. Given these limitations, AI/ML 
developers often gravitate to other more easily accessible 
databases derived from clinical trials and/or unrelated 
research studies.[8] Although clinical trial/research data 
could be more convenient to access due to availability, these 

datasets may not have been collected for the intended use, 
and also may not accurately represent “real world” practices.

The use of in silico (i.e., synthetic) data provides opportunities 
to accelerate the development of AI/ML models in 
healthcare.[9,10] The synthetic data is produced based on 
using real-world observations to create a de-identified data 
set that emulates the “real data equivalent” appropriate for 
distribution to developers. This practice has been leveraged 
to great effect in the basic sciences and pharmaceutical 
industry for drug development,[11,12] however, to date this 
paradigm has not been widely adopted in laboratory 
medicine for AI/ML. To this end, the goal of this paper is 
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to determine the clinical utility of “synthetic data” trained 
ML algorithm and their performance measures.

Tuberculosis (TB) serves as a unique opportunity to 
evaluate the potential value of the synthetic-data trained 
ML algorithms to diagnose disease. Over 10 million 
people acquire TB annually despite advancements in 
therapeutics and diagnostic testing methods.[13] Therefore, 
this infectious disease remains a persistent clinical 
concern which is responsible for significant morbidity and 
mortality, particularly in the developing world. Continued 
technological gaps in TB testing include the urgent need for 
robust biomarkers to enable identification of latent infection 
and increased sensitivity.[14] The recent novel application 
of multiplex biomarker assays has demonstrated promise 
toward this goal and serves as our prototype for evaluating 
the utility of its synthetic data for training AI/ML algorithms.

The generation of effective TB-predictive ML algorithms is 
dependent on robust datasets for training and performance 
assessment. To that end, the first objective of this approach 
was to generate expanded synthetic datasets that are 
statistically similar to the original dataset, which contains 
recorded values from actual patients. Using the larger, 
deidentified synthetic data instead of the original, limited 
data will allow users to perform downstream analysis and 
train machine learning models on a larger dataset without 
exposing any confidential information about the patients.

Materials and Methods

The anonymized retrospective dataset was derived from 
278 patients who were initially recruited in Pakistan per 
World Health Organization (WHO) general guidelines[15] 
for TB diagnostics from a recently published study that was 
conducted to evaluate a multiplex serologic panel for active 
tuberculosis patients.[16] No patient identifiable information 

was available or shared (only raw multiplex serology data 
and the status of TB positivity and negativity).

Synthetic data generation
Synthetic datasets were trained and tested on the real-
world dataset derived from the aforementioned 278 
subjects with and without TB [Figure 1]. Study subjects 
were tested on a multiplex serology platform for 31 TB 
antigen biomarkers. The data was divided into datasets for 
training and initial validation and a generalization dataset 
as depicted in the study design diagram. Dataset A (real 
data) was used for training and initial validation as well as 
synthetic data generation and was comprised of 124 cases 
(62 TB positive and 62 TB negative). Similar to Dataset 
A, the secondary generalization dataset is comprised of 
the remaining real-world data (154 total cases, 137 TB 
positive and 17 TB negative) which is used to validate the 
models trained on the real and synthetic datasets.

Synthetic data were derived from Dataset A (the real dataset) 
which was used to produce three different synthetic datasets 
(B, C, and D). Dataset B represents a one-to-one ratio of 
the synthetic data to the real data acquired from dataset A, 
while Dataset C and D are the expanded synthetic datasets 
representing a one to two and a one to five ratios to Dataset 
A. Datasets B, C, and D were developed using R statistical 
software with the synthpop package. We created an R script 
that reads the original dataset containing the real data from 
Dataset A within its comma-separated values (.csv) file into 
a separate data frame. We then randomly shuffled the entire 
dataset and divided the data frame into two, one containing 
the target feature “TB-31” and the other containing 
the rest of the columns (features). Then we created the 
synthetic dataset using the features as a source. This was 
done by calling the syn function of the synthpop library 
in R software (R-project. org). The syn function accepts a 
parameter m that is defined as number of synthetic copies 

Figure 1: Study design
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of the original (observed) data to be generated. We re-ran 
the function 3 times with m=1, m=2, and m=5 to generate 
1 time, 2 times, and 5 times the rows in the original dataset 
features, respectively.

Once the synthetic features were generated, their respective 
datasets were then statistically compared with the original 
real dataset (Dataset A) as seen in Figure 2. This includes 
calculating 1st quartile, median, and 3rd quartile values. 
Visual representation was also done to ensure that the 
distribution of data between the original and synthetic 
datasets is as close as possible. In addition to a similar 
distribution of each feature individually, it is also important 
to ensure that the relationship between features resembles 
the original dataset as closely as possible. A  correlation 
matrix was therefore utilized to show differences in the 
relationship between variables.

Next, we combined the target feature with the synthetic 
features. For the synthetic dataset with m=1, we directly 
combined the target feature with the synthetic features one 
to one using the cbind function in R to generate our final 
1-time synthetic dataset (Dataset B). For the ×2 synthetic 
dataset (expanded one to two to create Dataset C) and ×5 
synthetic dataset (expanded one to five to create Dataset 
D), we took each set of the synthetic datasets generated 
from synthpop (×5 and ×2) and then used cbind function 
separately on each set to combine the target feature. This 
resulted in 2 data frames (for the ×2) and 5 data frames 
(for the ×5), respectively. We then merged these multiple 
data frames into a single, final combined dataset using the 
rbind function to generate our final ×2 (Dataset C) and 
×5 (Dataset D) synthetic data frame.

ML training and generalization
Both the real dataset (A) and the respective synthetic 
datasets (B, C, and D) were used to train the ML 
algorithms produced using: (a) traditional non-automated 
manual coding techniques of  an optimized random forest 
(RF) algorithm followed by (b) our automated machine 
learning (auto-ML) Machine Learning Intelligence 
(MILO) platform (MILO ML, LLC, Sacramento, CA). 
For the non-automated traditional ML approach, the RF 
algorithm in the R software package was used to train 
the models. Four different models were subsequently 
trained: on the original real dataset (non-synthetic 
Dataset A), on the ×1 synthetic dataset (Dataset B), 
on the ×2 synthetic dataset (Dataset C), and on the ×5 
synthetic dataset (Dataset D). All models generated 
above were secondarily validated on a separate “real” 
(nonsynthetic) generalization dataset to test and measure 
performance for all the aforementioned models that 
were constructed from the  original real (non-synthetic) 
and synthetic datasets. The same training and validation 
steps described above (in the non-automated RF 
approach) were also repeated through our automated 
machine learning approach through the Auto-ML 
platform MILO. As described previously,[17-19] the MILO 
platform incorporates an automated data processor, a 
data feature selector and data transformer, followed by 
multiple supervised ML model building approaches that 
make use of  its custom hyperparameter search tools that 
help identify the optimal hyperparameter combinations 
for each of  the seven algorithms utilized within MILO 
(neural network/multi-layer perceptron, logistic regression 

Figure 2: Distribution of Dataset A vs. Dataset B
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(LR), naïve Bayes (NB), k-nearest neighbor (k-NN), 
support vector machine (SVM), random forest (RF), and 
XGBoost gradient boosting machine (GBM) techniques) 
[Figure 3].

Traditional statistical analysis
Traditional statistics was also performed on each dataset 
via JMP Software (SAS Institute, Cary, NC). Data was 
also assessed for normality using the Ryan-Joiner Test. 
Continuous parametric variables were analyzed using 
the 2-sample t-test. A  P value <0.05 was considered 

statistically significant with ROC analysis also performed 
to compare TB biomarker performance.

Results

Demographics
Figure 2 illustrates histogram distributions for synthetic 
versus real data observed and Figure 4 illustrates QQ plot 
for synthetic versus real data. Table  1 provides descriptive 
statistics for biomarkers used as features in ML training 
for datasets A and B.

Figure 3: Overview of MILO workflow

Figure 4: QQ plot of Dataset A vs. Dataset B: The figure shows the Q-Q (quantile-quantile) plot for each attribute in the original dataset and the 
synthetic dataset. It shows that the distribution of each attribute is similar across the two datasets
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Machine learning performance
The nonautomated traditional (manual programming) 
ML approaches trained on Dataset A (real data) identified 
an RF model that produced an accuracy of 77.3%, with 
clinical sensitivity and specificity of 74.5% (95% CI, 66.3–
81.5%) and 100% (95% CI, 80.5–100%) respectively. Using 
the same technique, RF models built on Dataset B showed 
an accuracy of 61.6%, with clinical sensitivity of 60.6% 
(95% CI, 51.9–68.8%) and specificity of 70.6% (95% CI, 
44.0–89.7%). Random forest models built on Datasets C 
and D respectively yielded accuracies of 64.2% and 38.9%. 
Clinical sensitivity, were respectively, 63.5% (95% CI, 54.9–
71.6%) and 40.2% (95% CI, 31.9–48.9%), and specificity 
was 70.6% (95% CI, 44.0–89.7%) and 29.4% (95% CI, 
10.3–56.0%). ROC_AUC for the manually programmed 
RF models trained from Datasets A, B, C, and D were 
0.97, 0.73, 0.83, and 0.68, respectively [Table  2].

As a comparison, the best MILO RF models (automated 
ML approach) showed slightly better performance within 
the various datasets evaluated. The RF MILO model 

built on the real dataset A  showed an accuracy of 89% 
with a clinical sensitivity and specificity of 89% (95% CI, 
83–93%) and 100% (95% CI, 81–100%), respectively. The 
best performing MILO RF model based on the synthetic 
dataset B (1:1 ratio with the real data) showed an accuracy 
of 71% and clinical sensitivity and specificity of 69% (95% 
CI, 60–76%) and 88% (95% CI, 64–99%), respectively. The 
best MILO RF model based on the expanded synthetic 
dataset C (×2) showed an accuracy of 74% with a clinical 
sensitivity and specificity of 72% (95% CI, 64–80%) 
and 88% (95% CI, 64–99%), respectively, while the best 
performing MILO RF model based on the expanded 
synthetic dataset D (×5) showed an accuracy of 56% 
with a clinical sensitivity and specificity of 53% (95% CI, 
44–61%) and 82% (95% CI, 57–96%), respectively. ROC 
AUC for the MILO RF models trained from Datasets A, 
B, C, and D were 0.96, 0.77, 0.87, and 0.66, respectively 
[Table 2].

The overall best performing models (on the real and the 
synthetic datasets) were shown to be the MILO non-RF 

Table 1: Descriptive Statistics for Biomarkers in Dataset A (real data) vs. Dataset B (synthetic ×1)
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models. The best overall MILO model (a GBM model) 
built on the real dataset A showed an accuracy of  90% 
with a clinical sensitivity and specificity of  89% (95% CI, 
83–94%) and 100% (95% CI, 81–100%), respectively. The 
best performing MILO model (an SVM model) based 
on the synthetic dataset B (1:1 ratio with the real data) 
showed an accuracy of  91% and clinical sensitivity and 
specificity of  93% (95% CI, 87–96%) and 77% (95% CI, 
50–93%), respectively. The best overall MILO model used 
a neural network technique and based on the expanded 
synthetic dataset C (×2) showed an accuracy of  71% 
with a clinical sensitivity and specificity of  67% (95% 
CI, 59–75%) and 100% (95% CI, 81–100%), respectively, 
whereas the best performing overall MILO model based 
on the expanded synthetic (×5) dataset D (also a neural 
network model) showed an accuracy of  54% with a 
clinical sensitivity and specificity of  49% (95% CI, 
40–58%) and 94% (95% CI, 71–99%) respectively. ROC 
AUC for the best (non-RF) MILO models trained from 
Datasets A, B, C, and D were 0.95, 0.83, 0.91, and 0.55, 
respectively [Table 2].

Overall, as shown above, compared to the random forest 
models evaluated through the non-automated (non-
MILO) approach, the best MILO models (including the 
best MILO RF models) were shown to perform slightly 
better in both real and the synthetic dataset-trained 
models evaluated [Table 2]. Also, the overall ROC-AUC 
comparison measures, within the various models and 
datasets (in both the MILO and non-MILO approaches) 
showed the real dataset to be the best performing data 
followed by the expanded synthetic dataset ×2 when 
compared to the unexpanded (×1) synthetic dataset B and 
the expanded ×5 synthetic dataset D.

Conclusions
This work provides proof-of-concept for the utility of 
converting real-world patient datasets to synthetic datasets to 
aid in the development of ML models for differentiating TB 
positive and negative patients from complex serologic datasets. 
Importantly, the synthetic datasets allowed development 
of models with good performance characteristics upon 
validation in a secondary, real-world generalization dataset. 
This was true of models which were developed from both 
traditional (non-automated derived RF models) as well 
as the models derived from our automated ML approach. 
However, the overall MILO approach was able to find the 
better performing models within the synthetic datasets 
evaluated which supports its use within such settings to 
emulate real-world data modeling. The MILO approach also 
displayed that such approach is not model-specific, with its 
best performing models employing an array of algorithms 
(i.e., neural network, gradient boosting machine, and 
support vector machine), depending on the synthetic dataset 
utilized [Table 2]. Although models trained on datasets with 
the artificially increased sized (×5) synthetic data (Dataset 
D) showed decreased performance, the trend in this study 
showed that the unexpanded (×1) dataset (Dataset B) 
had the best overall accuracy while the slightly expanded 
(×2) synthetic dataset (Dataset C) yielding the overall best 
models, based on the ROC-AUC, within these synthetic 
datasets regardless of the modeling approach employed, 
MILO auto-ML or non-MILO RF. 

Although this study shows that synthetic datasets can be 
employed for diagnostic modeling studies, the fact remains 
that the models trained on the real dataset outperformed 
the models that were trained on the synthetic data, 
regardless of the size of the synthetic data employed. 

Table 2: Performance comparison of the Models trained on real data versus synthetic data
Model performances based on 
the “real” secondary dataset

Trained on dataset A  
real data (95% CI)

Trained on dataset B  
(synthetic data ×1) 
(95% CI)

Trained on dataset C  
(synthetic data ×2) 
(95% CI)

Trained on dataset D  
(synthetic data ×5) 
(95% CI)

MILO’s best models MILO GBM MILO SVM MILO DNN MILO DNN
ROC-AUC 0.95 (0.87–1) 0.83 (0.63–1) 0.91 (0.8–1) 0.55 (0.48–0.62)

Accuracy 90 (84–95) 91 (85–95) 71 (63–78) 54 (46–62)

Sensitivity 89 (83–94) 93 (87–96) 67 (59–75) 49 (40–58)

Specificity 100 (81–100) 77 (50–93) 100 (81–100) 94 (71–99)

MILO’s best RF models MILO RF MILO RF MILO RF MILO RF

ROC-AUC 0.96 (0.82–1) 0.77 (0.67–0.87) 0.87 (0.77–0.97) 0.66 (0.52–0.8)

Accuracy 89 (83–93) 71 (63–78) 74 (66–81) 56 (48–64)

Sensitivity 88 (81–93) 69 (60–76) 72 (64–80) 53 (44–61)

Specificity 100 (81–100) 88 (64–99) 88 (64–99) 82 (57–96)

Non-MILO RF models Non-MILO RF Non-MILO RF Non-MILO RF Non-MILO RF

ROC-AUC 0.97 (0.94–1) 0.73 (0.60–0.88) 0.83 (0.71–0.92) 0.68 (0.57–0.82)

Accuracy 77 (70–84) 62 (54–69) 64 (56–72) 39 (31–47)

Sensitivity 75 (66–82) 61 (52–69) 64 (55–72) 40 (32–49)

Specificity 100 (81–100) 71 (44–90) 71 (44–90) 29 (10–56)
DNN = deep neural network, GBM = gradient boosting machine, RF = random forest, SVM = support vector machine
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Therefore, there remains a need for continually improving 
such synthetic datasets to help build models that can 
ultimately closely mimic the performance of the models 
that were based on real datasets. Continued improved 
methods in dataset processing may in the future allow 
manufacture of larger sample sizes with more realistic 
variations which may closely reflect the original real-
world dataset. More important than boosting the size of 
the clinical datasets at this time is the capability of making 
them available with fewer patient privacy concerns. In 
that regard, we have shown that these synthetic datasets 
retain similar distribution of features, relationships 
among features, and most importantly the ability to train 
models which subsequently exhibit good performance 
in the desired task as measured against the secondary 
generalization dataset (real-world data not altered by the 
synthetic data generation process).

The development of deployable AI/ML algorithms with 
real-world utility is reliant upon the availability of robust 
datasets of sufficient size for model training, prior to 
validation and performance assessment on secondary 
generalization datasets.[1-3] With the now widespread 
availability of computational storage for large datasets 
and processing speed to facilitate high-throughput 
algorithm training, AI/ML models are widely used in a 
range of applications from image recognition to control of 
autonomous vehicles.[20] However, there currently appears 
to be an underutilization of these methods to solve 
challenges in healthcare given the widespread penetrance 
and successful implementation of AI/ML elsewhere in 
modern times.[21] Clinical medicine at first glance appears to 
be an ideal application for these methods, given that high-
impact diagnostic, prognostic, and treatment decisions 

are often made based on interpretation and synthesis 
of multiple quantitative and complex data elements. 
In addition, the advent of the EMR means that vast 
quantities of clinical data have been accumulated over the 
past several decades, and this only continues to accelerate 
with the advent of new diagnostic modalities with even 
larger data outputs (e.g., genomics and proteomics).

The successful application of AI/ML methods in other 
fields outside of healthcare has been less challenging, 
since available data may be widely disseminated and used 
for development in an open-source fashion. In contrast, 
healthcare data is heavily restricted due to patient privacy 
regulations.[4] Access to such data must proceed through 
a very time-consuming and highly regulated process 
requiring researchers to submit a specific protocol defining 
the dataset required, how it will be developed, and outcome 
measures.[1,2,5] This necessarily onerous process means that 
development on clinical data is highly limited, and there 
is a disconnect between data related to critical healthcare 
challenges, and the developers with the expertise to create 
models which may solve them. Often the clinical personnel 
who are most acutely aware of these needs do not have 
the specific data science expertise required for robust 
development, validation, and deployment of useful AI/
ML algorithms. On the other hand, data scientists often 
lack the clinical background needed to define the scope 
of the critical tasks that AI/ML can be brought to bear 
in the healthcare domain.[22,23] More importantly, although 
public datasets exist in other fields for developers, data 
scientists often lack access to clinical datasets, crippling 
development in this critical, high-impact field.

We propose a relatively new paradigm [Figure 5] to 
address this shortcoming in the field, in which deidentified 

Figure 5: Paradigm for AI/ML development in healthcare. Synthetic data may help to improve access to clinical data if it is shown to reduce regulatory 
hurdles
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synthetic datasets may be made more accessible for 
development purposes. Developers may more freely explore 
these datasets, increasing the probability of discovery of 
optimal algorithms and diagnostic models. Models with 
great promise may subsequently be tested on additional 
real-world datasets, which may at that point require 
appropriate compliance with traditional institutional 
review board protocol. However, this step would only 
need to be taken after identification of suitable models, 
shifting the burden of regulatory compliance toward the 
generalization and validation phase, rather than prior 
to development. This would remove a now rate-limiting 
step which greatly impinges on AI/ML development in 
healthcare.

Increasing access to challenging problems in science 
and healthcare has previously resulted in solutions 
from unexpected sources. A  user interface (Foldit) 
for the protein-folding software Rosetta allowed 
widespread access to non-scientists, who subsequently 
have provided solutions to difficult problems in protein 
structure prediction and design which previously 
challenged domain experts and existing algorithms.[11,24] 
Increasing access to critical problems increases the 
likelihood of  discovery of  solutions by increasing 
throughput and diversification of  possible solutions, 
both of  which increase sampling depth and breadth. 
Indeed, a priori it may not be known which approach or 
algorithm may be optimal for a given task. Therefore, 
the best approach is to allow less restrictive research 
and development on each problem, rather than limiting 
model development on a particular task to the expertise 
and biases of  the researcher with access to the dataset 
at hand. Increasing the connectivity of  datasets and 
developers will inherently lead to improvements in 
model development and ultimately, potentially clinical 
outcomes. Computational researchers aim to avoid the 
trap of  local energy minima (the best solution arising 
from one algorithm type or approach) and instead 
discover the true global minima (the true optimal 
model). In order to facilitate this, the social dynamics 
of  the clinical healthcare and computational (AI/
ML) researcher must allow widespread sampling of 
datasets by a diversity of  approaches and personnel 
expertise. The most dramatic example of  this is public 
distribution or crowd sourcing of  such problems, but 
even expanding access to such problems beyond the 
confines of  specifically approved protocols would 
represent a major enhancement to development of  such 
protocols. To this end, we believe that adoption of  an 
iterative model which makes clinical data available in 
a synthetic form prior to validation in a clinical setting 
may be a key step to realizing the full potential of  AI/
ML in healthcare.

A limitation to our study is that it is based on one dataset 
with relatively modest size and focused on TB. Further 

studies are needed to evaluate the impact of synthetic data 
for this and other medical disciplines.

Access to high-quality and accurate health record data 
remains an ongoing challenge for both routine patient 
care as well as for AI/ML development. Production of 
synthetic data derived from “real world” parameters 
provides opportunities to accelerate the development of 
AI/ML methods when data access remains limited. The 
use of synthetic data for training ML approaches to 
predict TB is feasible and supports further investigations 
in other disease states.
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